
How	to	Install	TIG	Stack	(Telegraf,	InfluxDB,	and	Grafana)	on	Debian	12
The	TIG	(Telegraf,	InfluxDB,	and	Grafana)	Stack	is	an	acronym	for	a	platform	of	open-source	tools	to	make	the	collection,	storage,	graphing,	and	alerting	of	system	metrics	easier.	You	can
monitor	and	visualize	metrics	such	as	memory,	disk	space,	logged-in	users,	system	load,	swap	usage,	uptime,	running	processes,	etc.	from	one	place.	The	tools	used	in	the	stack	are	as	follows:

Telegraf	-	is	an	open-source	metrics	collection	agent	for	collecting	and	sending	data	and	events	from	databases,	systems,	and	IoT	sensors.	It	supports	various	output	plugins	such	as
InfluxDB,	Graphite,	Kafka,	etc	to	which	it	can	send	the	collected	data.
InfluxDB	-	is	an	open-source	time-series	database	written	in	the	Go	language.	It	is	optimized	for	fast,	high-availability	storage	and	is	suitable	for	anything	involving	large	amounts	of	time-
stamped	data,	including	metrics,	events,	and	real-time	analytics.
Grafana	-	is	an	open-source	data	visualization	and	monitoring	suite.	It	supports	various	input	plugins	such	as	Graphite,	ElasticSearch,	InfluxDB,	etc.	It	provides	a	beautiful	dashboard	and
metric	analytics	allowing	you	to	visualize	and	monitor	any	kind	of	system	metrics	and	performance	data.

In	this	tutorial,	you	will	learn	how	to	install	and	configure	the	TIG	Stack	on	a	single	Debian	12	server.

Prerequisites
1.	 A	server	running	Debian	12	with	a	minimum	of	1	GB	of	RAM.

2.	 A	non-sudo	user	with	root	privileges.

3.	 The	uncomplicated	Firewall(UFW)	is	enabled	and	running.

4.	 A	Fully	Qualified	Domain	Name	(FQDN)	like	grafana.example.com	pointing	to	your	server.

5.	 An	SMTP	account	with	an	email	service	like	Amazon	SES	or	Mailgun	for	getting	email	notifications	for	service	alerts.

6.	 Ensure	that	everything	is	updated.

$	sudo	apt	update	&&	sudo	apt	upgrade

7.	 A	few	essential	packages	are	required	for	the	tutorial	and	Craft	CMS	to	run.	Some	of	these	will	already	be	on	your	server.

$	sudo	apt	install	curl	wget	nano	software-properties-common	dirmngr	apt-transport-https	ca-certificates	lsb-release	debian-archive-keyring	gnupg2	ufw	unzip	-y

Step	1	-	Configure	Firewall
Before	installing	any	packages,	the	first	step	is	configuring	the	firewall	to	open	ports	for	InfluxDB	and	Grafana.

Check	the	status	of	the	firewall.

$	sudo	ufw	status

You	should	see	something	like	the	following.

Status:	active

To Action						From
-- ------						----
OpenSSH ALLOW							Anywhere
OpenSSH	(v6) ALLOW							Anywhere	(v6)

Open	port	8086	for	InfluxDB	and	3000	for	the	Grafana	server.

$	sudo	ufw	allow	8086
$	sudo	ufw	allow	3000

Allow	HTTP	and	HTTPs	ports.

$	sudo	ufw	allow	http
$	sudo	ufw	allow	https

Check	the	status	again	to	confirm.

$	sudo	ufw	status
Status:	active

To Action						From
-- ------						----
OpenSSH ALLOW							Anywhere
8086 ALLOW							Anywhere
3000 ALLOW							Anywhere
80/tcp ALLOW							Anywhere
443 ALLOW							Anywhere
OpenSSH	(v6) ALLOW							Anywhere	(v6)
8086	(v6) ALLOW							Anywhere	(v6)
3000	(v6) ALLOW							Anywhere	(v6)
80/tcp	(v6) ALLOW							Anywhere	(v6)
443	(v6) ALLOW							Anywhere	(v6)

Step	2	-	Install	InfluxDB
We	will	use	InfluxDB's	official	repository	to	install	it.

Download	the	InfluxDB	GPG	key.

$	wget	-q	https://repos.influxdata.com/influxdata-archive_compat.key

Import	the	GPG	key	into	the	server.

$	echo	'393e8779c89ac8d958f81f942f9ad7fb82a25e133faddaf92e15b16e6ac9ce4c	influxdata-archive_compat.key'	|	sha256sum	-c	&&	cat	influxdata-archive_compat.key	|	gpg	--dearmor	|	sudo	tee	/etc/apt/trusted.gpg.d/influxdata-archive_compat.gpg	>	/dev/null
influxdata-archive_compat.key:	OK

Import	the	InfluxDB	repository.

$	echo	'deb	[signed-by=/etc/apt/trusted.gpg.d/influxdata-archive_compat.gpg]	https://repos.influxdata.com/debian	stable	main'	|	sudo	tee	/etc/apt/sources.list.d/influxdata.list

Update	the	system's	repository	list.

$	sudo	apt	update

You	have	the	option	of	installing	InfluxDB	1.8.x	or	2.0.x.	However,	it	is	better	to	use	the	latest	version.	Install	InfluxDB.

$	sudo	apt	install	influxdb2

Start	the	InfluxDB	service.

$	sudo	systemctl	start	influxdb

Check	the	status	of	the	service.

$	sudo	systemctl	status	influxdb
?	influxdb.service	-	InfluxDB	is	an	open-source,	distributed,	time	series	database
					Loaded:	loaded	(/lib/systemd/system/influxdb.service;	enabled;	preset:	enabled)
					Active:	active	(running)	since	Tue	2024-01-02	02:39:41	UTC;	1s	ago
							Docs:	https://docs.influxdata.com/influxdb/

				Process:	5584	ExecStart=/usr/lib/influxdb/scripts/influxd-systemd-start.sh	(code=exited,	status=0/SUCCESS)
			Main	PID:	5585	(influxd)
						Tasks:	8	(limit:	2299)
					Memory:	53.1M

CPU:	735ms
					CGroup:	/system.slice/influxdb.service

??5585	/usr/bin/influxd
........

Step	3	-	Create	InfluxDB	Database	and	User	Credentials
To	store	the	data	from	Telegraf,	you	need	to	set	up	the	Influx	database	and	user.

InfluxDB	comes	with	a	command-line	tool	named	influx	for	interacting	with	the	InfluxDB	server.	Think	of	influx	as	the	mysql	command-line	tool.

Run	the	following	command	to	perform	the	initial	configuration	for	Influx.

$	influx	setup
> Welcome	to	InfluxDB	2.0!
?	Please	type	your	primary	username	navjot
?	Please	type	your	password	***************
?	Please	type	your	password	again	***************
?	Please	type	your	primary	organization	name	howtoforge
?	Please	type	your	primary	bucket	name	tigstack
?	Please	type	your	retention	period	in	hours,	or	0	for	infinite	360
?	Setup	with	these	parameters?
		Username: navjot
		Organization:						howtoforge
		Bucket: tigstack
		Retention	Period:		360h0m0s
	Yes
User				Organization				Bucket
navjot		howtoforge						tigstack

You	need	to	set	up	your	initial	username,	password,	organization	name,	the	primary	bucket	name	to	store	data,	and	the	retention	period	in	hours	for	that	data.	Your	details	are	stored	in	the
/home/username/.influxdbv2/configs	file.

You	can	also	perform	this	setup	by	launching	the	URL	http://<serverIP>:8086/	in	your	browser.	Once	you	have	performed	the	initial	setup,	you	can	log	in	to	the	URL	with	the	credentials	created
above.

You	should	be	greeted	with	the	following	dashboard.

The	initial	setup	process	creates	a	default	token	that	has	full	read	and	write	access	to	all	the	organizations	in	the	database.	You	need	a	new	token	for	security	purposes	which	will	only	connect
to	the	organization	and	bucket	we	want	to	connect	to.

To	create	a	new	token,	click	on	the	following	icon	from	the	left	sidebar	and	click	the	API	Tokens	link	to	proceed.

You	will	be	taken	to	the	API	Tokens	page.	Here,	you	will	see	the	default	token	that	we	created	at	the	time	of	the	initial	configuration.

Click	on	the	Generate	API	Token	button	and	select	the	Custom	API	Token	option	to	launch	a	new	overlay	popup.	Give	a	name	to	the	Token	(telegraf)	and	expand	the	Resources	section	and
select	the	default	bucket	we	created	under	both	the	Read	and	Write	sections.

Click	Generate	to	finish	creating	the	token.	Click	the	COPY	TO	CLIPBOARD	button	to	copy	the	token.	The	button	might	not	work	in	some	cases	so	make	sure	to	confirm	before	dismissing	the
popup.

Save	it	for	now	since	we	will	need	it	later	on.

This	completes	the	installation	and	configuration	of	InfluxDB.	Next,	we	need	to	install	Telegraf.

Step	4	-	Install	Telegraf
Telegraf	and	InfluxDB	share	the	same	repository.	It	means	you	can	install	Telegraf	directly.

$	sudo	apt	install	telegraf

Telegraf's	service	is	enabled	and	started	automatically	during	installation.

Telegraf	is	a	plugin-driven	agent	and	has	4	types	of	plugins:

1.	 Input	plugins	collect	metrics.
2.	 Processor	plugins	transform,	decorate,	and	filter	metrics.
3.	 Aggregator	plugins	create	and	aggregate	metrics.
4.	 Output	plugins	define	the	destinations	where	metrics	are	sent	including	InfluxDB.

Telegraf	stores	its	configuration	for	all	these	plugins	in	the	file	/etc/telegraf/telegraf.conf.	The	first	step	is	to	connect	Telegraf	to	InfluxDB	by	enabling	the	influxdb_v2	output	plugin.	Open	the	file
/etc/telegraf/telegraf.conf	for	editing.

$	sudo	nano	/etc/telegraf/telegraf.conf

Find	the	line	[[outputs.influxdb_v2]]	and	uncomment	out	by	removing	the	#	in	front	of	it.	Edit	out	the	code	below	it	in	the	following	way.

#	#	Configuration	for	sending	metrics	to	InfluxDB	2.0
	[[outputs.influxdb_v2]]
#			##	The	URLs	of	the	InfluxDB	cluster	nodes.
#			##
#			##	Multiple	URLs	can	be	specified	for	a	single	cluster,	only	ONE	of	the
#			##	urls	will	be	written	to	each	interval.
#			##			ex:	urls	=	["https://us-west-2-1.aws.cloud2.influxdata.com"]
				urls	=	["http://127.0.0.1:8086"]
#
#			##	Token	for	authentication.
			token	=	"$INFLUX_TOKEN"
#
#			##	Organization	is	the	name	of	the	organization	you	wish	to	write	to.
			organization	=	"howtoforge"
#

#			##	Destination	bucket	to	write	into.
			bucket	=	"tigstack"

Paste	the	InfluxDB	token	value	saved	earlier	in	place	of	the	$INFLUX_TOKEN	variable	in	the	code	above.

Search	for	the	line	INPUT	PLUGINS	and	you	will	see	the	following	input	plugins	enabled	by	default.

#	Read	metrics	about	cpu	usage
[[inputs.cpu]]
		##	Whether	to	report	per-cpu	stats	or	not
		percpu	=	true
		##	Whether	to	report	total	system	cpu	stats	or	not
		totalcpu	=	true
		##	If	true,	collect	raw	CPU	time	metrics
		collect_cpu_time	=	false
		##	If	true,	compute	and	report	the	sum	of	all	non-idle	CPU	states
		report_active	=	false
		##	If	true	and	the	info	is	available	then	add	core_id	and	physical_id	tags
		core_tags	=	false

#	Read	metrics	about	disk	usage	by	mount	point
[[inputs.disk]]
		##	By	default	stats	will	be	gathered	for	all	mount	points.
		##	Set	mount_points	will	restrict	the	stats	to	only	the	specified	mount	points.
		#	mount_points	=	["/"]

		##	Ignore	mount	points	by	filesystem	type.
		ignore_fs	=	["tmpfs",	"devtmpfs",	"devfs",	"iso9660",	"overlay",	"aufs",	"squashfs"]

		##	Ignore	mount	points	by	mount	options.
		##	The	'mount'	command	reports	options	of	all	mounts	in	parathesis.
		##	Bind	mounts	can	be	ignored	with	the	special	'bind'	option.
		#	ignore_mount_opts	=	[]

#	Read	metrics	about	disk	IO	by	device
[[inputs.diskio]]
....
....

#	Get	kernel	statistics	from	/proc/stat
[[inputs.kernel]]
		#	no	configuration

#	Read	metrics	about	memory	usage
[[inputs.mem]]
		#	no	configuration
		
#	Get	the	number	of	processes	and	group	them	by	status
[[inputs.processes]]
		#	no	configuration

#	Read	metrics	about	swap	memory	usage
[[inputs.swap]]
		#	no	configuration

#	Read	metrics	about	system	load	&	uptime
[[inputs.system]]
		#	no	configuration

You	can	configure	additional	input	plugins	depending	upon	your	requirement	including	Apache	Server,	Docker	containers,	Elasticsearch,	iptables	firewall,	Kubernetes,	Memcached,	MongoDB,
MySQL,	Nginx,	PHP-fpm,	Postfix,	RabbitMQ,	Redis,	Varnish,	Wireguard,	PostgreSQL,	etc.

Once	you	are	finished,	save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted.

Restart	the	Telegraf	service	once	you	have	finished	applying	the	changes.

$	sudo	systemctl	restart	telegraf

Step	5	-	Verify	if	Telegraf	stats	are	being	stored	in	InfluxDB
Before	proceeding	further,	you	need	to	verify	if	Telegraf	stats	are	correctly	collected	and	fed	into	the	InfluxDB.	Open	the	InfluxDB	UI	in	your	browser,	click	the	second	icon	from	the	left	sidebar,
and	select	the	Buckets	menu.

Click	on	tigstack	and	you	should	be	greeted	with	the	following	page.

Click	on	the	bucket	name	and	then	click	on	one	of	the	values	in	the	_measurement	filter,	and	keep	clicking	on	other	values	as	and	when	they	appear.	Once	you	are	done,	click	the	Submit	button.
You	should	see	a	graph	at	the	top.	You	might	need	to	wait	for	some	time	for	the	data	to	appear.	We	shifted	the	time	interval	from	Past	1	h	to	Past	5m	to	generate	a	graph	over	a	large	area.

This	should	confirm	that	the	data	is	being	passed	on	correctly.

Step	6	-	Install	Grafana
We	will	use	the	official	Grafana	repository	to	install	it.	Import	the	Grafana	GPG	key.

$	sudo	mkdir	-p	/etc/apt/keyrings/
$	wget	-q	-O	-	https://apt.grafana.com/gpg.key	|	gpg	--dearmor	|	sudo	tee	/etc/apt/keyrings/grafana.gpg	>	/dev/null

Add	the	repository	to	your	system.

$	echo	"deb	[signed-by=/etc/apt/keyrings/grafana.gpg]	https://apt.grafana.com	stable	main"	|	sudo	tee	-a	/etc/apt/sources.list.d/grafana.list

If	you	want	to	install	Grafana	beta,	add	the	following	repository	instead.

$	echo	"deb	[signed-by=/etc/apt/keyrings/grafana.gpg]	https://apt.grafana.com	beta	main"	|	sudo	tee	-a	/etc/apt/sources.list.d/grafana.list

Update	the	system	repository	list.

$	sudo	apt	update

Install	Grafana.

$	sudo	apt	install	grafana

Start	and	Enable	the	Grafana	service.

$	sudo	systemctl	enable	grafana-server	--now

Check	the	service	status.

$	sudo	systemctl	status	grafana-server
?	grafana-server.service	-	Grafana	instance
					Loaded:	loaded	(/lib/systemd/system/grafana-server.service;	enabled;	preset:	enabled)
					Active:	active	(running)	since	Tue	2024-01-02	03:48:01	UTC;	3s	ago
							Docs:	http://docs.grafana.org
			Main	PID:	8769	(grafana)
						Tasks:	7	(limit:	2299)
					Memory:	42.6M
								CPU:	1.804s
					CGroup:	/system.slice/grafana-server.service
													??8769	/usr/share/grafana/bin/grafana	server	--config=/etc/grafana/grafana.ini	--pidfile=/run/grafana/grafana-server.pid	--packaging=deb	cfg:default.paths.logs=/var/log/grafana	cfg:default.paths...
.......

Step	7	-	Set	up	Grafana	Data	Source
Launch	the	URL	http://<serverIP>:3000	in	your	browser	and	the	following	Grafana	login	page	should	greet	you.

Login	with	the	default	username	admin	and	password	admin.	Next,	you	need	to	set	up	a	new	default	password.

You	shall	be	greeted	with	the	following	Grafana	homepage.	Click	on	the	Add	your	first	data	source	button.

Click	the	InfluxDB	button.

On	the	next	page,	select	Flux	from	the	dropdown	menu	as	the	query	language.	You	can	use	InfluxQL	as	the	query	language,	but	it	is	more	complicated	to	configure	since	it	supports	only
InfluxDB	v1.x	by	default.	Flux	supports	InfluxDB	v2.x	and	is	easier	to	set	up	and	configure.

Enter	the	following	values.

URL:	http://localhost:8086	Basic	Auth	Details	User:	navjot	Password:	<yourinfluxdbpassword>

InfluxDB	Details	Organization:	howtoforge	Token:	<influxdbtoken>	Default	Bucket:	tigstack

Click	on	the	Save	and	test	button	and	you	should	see	a	confirmation	message	verifying	the	setup	is	successful.

Step	8	-	Set	up	Grafana	Dashboards
The	next	step	is	to	set	up	Grafana	Dashboards.	Click	the	hamburger	menu	to	the	left	of	Home	and	click	Dashboards	to	open	the	Dashboard	Create	screen.

Click	the	Create	Dashboard	button	to	proceed.

On	the	next	page,	click	on	the	Add	visualization	button	to	launch	the	overlay	and	click	influxdb-1	to	select	it	as	the	data	source.

You	will	be	taken	to	the	following	Edit	Panel	page.

Paste	the	following	code	in	the	Query	Editor.

from(bucket:	"NAMEOFYOUBUCKET")
		|>	range(start:	v.timeRangeStart,	stop:	v.timeRangeStop)
		|>	filter(fn:	(r)	=>	r["_measurement"]	==	"cpu")
		|>	filter(fn:	(r)	=>	r["_field"]	==	"usage_idle")
		|>	filter(fn:	(r)	=>	r["cpu"]	==	"cpu-total")
		|>	filter(fn:	(r)	=>	r["host"]	==	"NAMEOFYOURHOST")
		|>	aggregateWindow(every:	v.windowPeriod,	fn:	mean,	createEmpty:	false)
		|>	map(fn:	(r)	=>	({	r	with	_value:	r._value	*	-1.0	+	100.0	}))
		|>	toFloat()
		|>	yield(name:	"mean")

Use	the	bucket	name	that	we	used	above.	And	the	name	of	the	host	which	you	can	retrieve	from	the	file	/etc/hostname.

The	above	code	will	calculate	the	CPU	Usage	and	generate	a	graph	for	it.	Give	the	Panel	a	Title.

Click	the	Query	inspector	button	and	then	click	the	Refresh	button	to	verify	if	your	query	is	working	successfully.	Click	the	cross	icon	to	close	the	inspector.

You	can	also	name	the	axis	by	using	the	Label	field	on	the	right	under	the	Axis	section.

Click	the	Apply	button	to	save	the	panel.	Click	the	Save	Dashboard	button,	once	finished.

Give	a	name	to	the	dashboard	and	click	Save	to	finish.

It	will	open	the	dashboard	and	then	click	on	the	Add	Visualization	button	to	create	another	panel.

Repeat	the	process	by	creating	another	panel	for	RAM	Usage.

from(bucket:	"NAMEOFYOUBUCKET")
		|>	range(start:	v.timeRangeStart,	stop:	v.timeRangeStop)
		|>	filter(fn:	(r)	=>	r["_measurement"]	==	"mem")
		|>	filter(fn:	(r)	=>	r["_field"]	==	"used_percent")
		|>	filter(fn:	(r)	=>	r["host"]	==	"NAMEOFYOURHOST")
		|>	aggregateWindow(every:	v.windowPeriod,	fn:	mean,	createEmpty:	false)
		|>	yield(name:	"mean")

Use	the	following	code	for	displaying	the	HDD	Usage.

from(bucket:	"NAMEOFYOURBUCKET")
		|>	range(start:	v.timeRangeStart,	stop:	v.timeRangeStop)
		|>	filter(fn:	(r)	=>	r["_measurement"]	==	"disk")
		|>	filter(fn:	(r)	=>	r["_field"]	==	"used")
		|>	filter(fn:	(r)	=>	r["path"]	==	"/")
		|>	filter(fn:	(r)	=>	r["host"]	==	"NAMEOFYOURHOST")
		|>	aggregateWindow(every:	v.windowPeriod,	fn:	mean,	createEmpty:	false)
		|>	map(fn:	(r)	=>	({	r	with	_value:	r._value	/	1000000.0	}))
		|>	toFloat()		
		|>	yield(name:	"mean")

You	can	create	an	unlimited	number	of	panels.

The	above	code	is	based	on	the	Flux	Scripting	language.	Fortunately,	you	don't	need	to	learn	the	language	to	write	queries.	You	can	generate	the	query	from	the	InfluxDB	URL.	Even	though
learning	the	language	can	benefit	in	optimizing	the	queries.

You	need	to	go	back	to	the	InfluxDB	dashboard	and	open	the	Explore	page	to	get	the	query.

Click	on	the	bucket	name	and	then	click	on	one	of	the	values	in	the	_measurement	filter,	and	keep	clicking	on	other	values	as	and	when	they	appear.	Once	you	are	done,	click	the	Script	Editor
button	and	you	should	see	the	following	page.	The	graph	should	also	be	updated.

Copy	the	query	shown	and	you	can	now	use	it	in	the	Grafana	dashboard	to	build	your	graphs.

Step	9	-	Configure	Alerts	and	Notifications
The	primary	use	of	setting	up	monitors	is	to	get	alerts	on	time	when	the	value	goes	beyond	a	certain	threshold.

The	first	step	is	to	set	the	destination	where	you	want	to	get	alerts.	You	can	receive	notifications	via	Email,	Slack,	Kafka,	Google	Hangouts	Chat,	Microsoft	Teams,	Telegram,	etc.

We	will	be	enabling	email	notifications	for	our	tutorial.	To	set	up	Email	notifications,	we	need	to	configure	the	SMTP	service	first.	Open	the	/etc/grafana/grafana.ini	file	for	configuring	SMTP.

$	sudo	nano	/etc/grafana/grafana.ini

Find	the	following	line	[smtp]	in	it.	Uncomment	the	following	lines	and	enter	the	values	for	the	custom	SMTP	server.

[smtp]
enabled	=	true
host	=	email-smtp.us-west-2.amazonaws.com:587
user	=	YOURUSERNAME
#	If	the	password	contains	#	or	;	you	have	to	wrap	it	with	triple	quotes.	Ex	"""#password;"""
password	=	YOURUSERPASSWORD
;cert_file	=
;key_file	=
;skip_verify	=	false
from_address	=	user@example.com
from_name	=	HowtoForge	Grafana
#	EHLO	identity	in	SMTP	dialog	(defaults	to	instance_name)
;ehlo_identity	=	dashboard.example.com
#	SMTP	startTLS	policy	(defaults	to	'OpportunisticStartTLS')
;startTLS_policy	=	NoStartTLS

Save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted.

Restart	the	Grafana	server	to	apply	the	settings.

$	sudo	systemctl	restart	grafana-server

Open	the	Grafana	page,	click	on	the	Alert	icon,	and	click	on	Contact	points.

Grafana	automatically	creates	and	sets	up	a	default	email	contact	point	that	must	be	configured	with	the	correct	email	address.	Click	on	the	edit	button	across	the	grafana-default-email	contact
point.

Enter	the	details	to	set	up	the	Email	notification	channel.

If	you	want	to	send	an	additional	message,	click	the	Optional	Email	settings	link	and	enter	the	message.

Click	Test	to	open	the	popup	and	then	click	the	Send	test	notification	button	to	see	if	the	email	settings	are	working.	Click	Save	contact	point	when	finished.

You	should	get	the	following	email	confirming	the	settings.

Now	that	we	have	set	up	notification	channels,	we	need	to	set	up	alerts	on	when	to	receive	these	emails.	To	set	up	the	alerts,	you	need	to	go	back	to	the	dashboard	panels.

Go	back	to	the	Dashboards	screen.	Click	on	the	dashboard	we	just	created	and	you	will	get	its	homepage	with	different	panels.	To	edit	the	panel,	click	on	the	name	of	the	panel,	and	a
dropdown	menu	will	pop	up.	Click	on	the	Edit	link	to	proceed.

Click	on	the	Alert	Panel	and	click	on	the	New	alert	rule	button	to	set	up	a	new	alert.	We	are	creating	an	alert	for	the	CPU	usage	panel.

You	can	now	configure	the	conditions	under	which	Grafana	will	send	the	alert.	Click	the	Options	link	dropdown	menu	and	select	the	default	time	range	(now-6h	to	now)	to	change	the	time
range	to	the	Last	15	minutes	which	means	it	will	check	from	15	minutes	ago	to	now.

By	default,	the	selected	alert	type	is	Grafana	managed	alert.	There	are	two	expressions	selected	by	default.	Delete	them	by	pressing	the	trash	button	against	them.	Select	the	Add	expression
dropdown	and	select	the	Classic	condition	as	the	expression	type.

Click	the	Set	as	alert	condition	to	select	the	chosen	expression	for	sending	the	alerts.	Doing	so	will	change	the	expression	box	as	shown	below.

Conditions

Grafana	works	on	a	query	of	the	following	format	to	determine	when	to	launch	an	alert.

avg()	OF	query(A)	IS	ABOVE	0.8

avg()	controls	how	the	value	for	each	series	should	be	reduced	to	a	comparable	value	against	the	threshold.	You	can	click	on	the	function	name	to	select	a	different	function	such	as	avg(),
min(),	max(),	sum(),	count(),	etc.

query(A)	The	letter	in	the	bracket	defines	what	query	to	execute	from	the	Metrics	tab.

IS	BELOW	14	Defines	the	type	of	threshold	and	the	threshold	value.	You	can	click	on	IS	BELOW	to	select	a	different	threshold	type.

You	can	add	a	second	condition	below	it	by	clicking	on	the	+	button	beneath	the	first	condition.	Currently,	you	can	only	use	AND	and	OR	operators	between	multiple	conditions.

Next,	we	will	set	the	evaluation	behavior.	Click	the	New	folder	button	to	create	a	folder	to	store	your	rules.	Click	the	New	evaluation	group	button	to	create	a	group	to	club	rules	which	will
get	evaluated	after	the	same	time	interval.	Set	the	time	interval	as	5m	while	creating	the	group.

Once	finished,	the	page	should	look	like	the	following.	Set	the	Alert	state	if	execution	error	or	timeout	to	Alerting.

Rule

Name	-	Enter	a	descriptive	name	for	the	alert
Folder	-	Create	or	select	a	pre-existing	folder	to	store	your	notification	rule.
Group	-	Enter	a	name	for	your	alert	group.	Alerts	in	a	single	group	are	evaluated	after	the	same	time	interval.
Pending	-	Specify	how	often	Grafana	should	evaluate	the	alert.	It	is	also	called	an	evaluation	interval.	You	can	set	any	value	you	desire	here.

No	Data	&	Error	Handling

You	can	configure	how	Grafana	should	handle	queries	that	return	no	data	or	only	null	values	using	the	following	conditions:

1.	 No	Data	-	Set	the	rule	state	to	NoData
2.	 Alerting	-	Set	the	rule	state	to	Alerting
3.	 Ok	-	Set	the	alert	rule	state	to	Ok,	as	you	will	get	an	alert	even	if	things	are	okay.

You	can	tell	Grafana	how	to	handle	execution	or	timeout	errors.

1.	 Alerting	-	Set	the	rule	state	to	Alerting
2.	 Ok	-	Set	the	alert	rule	state	to	Ok,	as	you	will	get	an	alert	even	if	things	are	okay.
3.	 Error	-	Set	the	alert	rule	state	to	Error	to	indicate	there	is	an	issue.

Once	you	are	finished,	click	the	button	Preview	alerts	to	see	if	everything	is	working	fine.	Click	the	Save	rule	and	exit	button	on	the	top	right	to	finish	adding	the	alert.	You	should	now	start
getting	alerts	on	your	email.	Following	is	an	example	of	one	such	email.

Step	10	-	Install	Nginx
Debian	12	ships	with	an	older	version	of	Nginx.	You	need	to	download	the	official	Nginx	repository	to	install	the	latest	version.

Import	Nginx's	signing	key.

$	curl	https://nginx.org/keys/nginx_signing.key	|	gpg	--dearmor	\
				|	sudo	tee	/usr/share/keyrings/nginx-archive-keyring.gpg	>/dev/null

Add	the	repository	for	Nginx's	mainline	version.

$	echo	"deb	[signed-by=/usr/share/keyrings/nginx-archive-keyring.gpg]	\
http://nginx.org/packages/mainline/debian	`lsb_release	-cs`	nginx"	\
				|	sudo	tee	/etc/apt/sources.list.d/nginx.list

Update	the	system	repositories.

$	sudo	apt	update

Install	Nginx.

$	sudo	apt	install	nginx

Verify	the	installation.	On	Debian	systems,	the	following	command	will	only	work	with	sudo.

$	sudo	nginx	-v
nginx	version:	nginx/1.25.3

Start	the	Nginx	server.

$	sudo	systemctl	start	nginx

Check	the	service	status.

$	sudo	systemctl	status	nginx
?	nginx.service	-	nginx	-	high	performance	web	server
					Loaded:	loaded	(/lib/systemd/system/nginx.service;	enabled;	preset:	enabled)
					Active:	active	(running)	since	Tue	2024-01-02	09:21:10	UTC;	5s	ago
							Docs:	https://nginx.org/en/docs/
				Process:	12964	ExecStart=/usr/sbin/nginx	-c	/etc/nginx/nginx.conf	(code=exited,	status=0/SUCCESS)
			Main	PID:	12965	(nginx)
						Tasks:	3	(limit:	2299)
					Memory:	2.9M
								CPU:	86ms
					CGroup:	/system.slice/nginx.service
													??12965	"nginx:	master	process	/usr/sbin/nginx	-c	/etc/nginx/nginx.conf"
													??12966	"nginx:	worker	process"
													??12967	"nginx:	worker	process"

Jan	02	09:21:10	grafana	systemd[1]:	Starting	nginx.service	-	nginx	-	high	performance	web	server...
Jan	02	09:21:10	grafana	systemd[1]:	Started	nginx.service	-	nginx	-	high	performance	web	server.

Step	11	-	Install	SSL
We	need	to	install	Certbot	to	generate	the	SSL	certificate.	You	can	either	install	Certbot	using	Debian's	repository	or	grab	the	latest	version	using	the	Snapd	tool.	We	will	be	using	the	Snapd
version.

Debian	12	comes	doesn't	come	with	Snapd	installed.	Install	Snapd	package.

$	sudo	apt	install	snapd

Run	the	following	commands	to	ensure	that	your	version	of	Snapd	is	up	to	date.

$	sudo	snap	install	core	&&	sudo	snap	refresh	core

Install	Certbot.

$	sudo	snap	install	--classic	certbot

Use	the	following	command	to	ensure	that	the	Certbot	command	can	be	run	by	creating	a	symbolic	link	to	the	/usr/bin	directory.

$	sudo	ln	-s	/snap/bin/certbot	/usr/bin/certbot

Verify	if	Certbot	is	functioning	correctly.

$	certbot	--version
certbot	2.8.0

Run	the	following	command	to	generate	an	SSL	Certificate.

$	sudo	certbot	certonly	--nginx	--agree-tos	--no-eff-email	--staple-ocsp	--preferred-challenges	http	-m	name@example.com	-d	grafana.example.com

The	above	command	will	download	a	certificate	to	the	/etc/letsencrypt/live/grafana.example.com	directory	on	your	server.

Generate	a	Diffie-Hellman	group	certificate.

$	sudo	openssl	dhparam	-dsaparam	-out	/etc/ssl/certs/dhparam.pem	4096

Check	the	Certbot	renewal	scheduler	service.

$	systemctl	list-timers

You	will	find	snap.certbot.renew.service	as	one	of	the	services	scheduled	to	run.

NEXT																								LEFT								LAST																								PASSED				UNIT																									ACTIVATES

Tue	2024-01-02	15:24:52	UTC	6h	left					Mon	2024-01-01	15:24:52	UTC	17h	ago			systemd-tmpfiles-clean.timer	systemd-tmpfiles-clean.service
Tue	2024-01-02	20:05:29	UTC	10h	left				Tue	2024-01-02	09:02:47	UTC	21min	ago	apt-daily.timer														apt-daily.service
Tue	2024-01-02	20:35:00	UTC	11h	left				-																											-									snap.certbot.renew.timer					snap.certbot.renew.service

Do	a	dry	run	of	the	process	to	check	whether	the	SSL	renewal	is	working	fine.

$	sudo	certbot	renew	--dry-run

If	you	see	no	errors,	you	are	all	set.	Your	certificate	will	renew	automatically.

Step	12	-	Configure	Nginx	for	Grafana	and	InfluxDB
Open	the	file	/etc/nginx/nginx.conf	for	editing.

$	sudo	nano	/etc/nginx/nginx.conf

Add	the	following	line	before	the	line	include	/etc/nginx/conf.d/*.conf;.

server_names_hash_bucket_size	64;

Save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted.

Create	and	open	the	file	/etc/nginx/conf.d/grafana.conf	for	editing.

$	sudo	nano	/etc/nginx/conf.d/grafana.conf

Paste	the	following	code	in	it.	Replace	grafana.example.com	with	your	domain	name.

map	$http_upgrade	$connection_upgrade	{
		default	upgrade;
		''	close;
}

server	{

				listen	443	ssl	reuseport;
				listen	[::]:443	ssl	reuseport;

				http2	on;

				server_name	grafana.example.com;

				access_log		/var/log/nginx/grafana.access.log;
				error_log			/var/log/nginx/grafana.error.log;

				ssl_certificate						/etc/letsencrypt/live/grafana.example.com/fullchain.pem;
				ssl_certificate_key		/etc/letsencrypt/live/grafana.example.com/privkey.pem;
				ssl_trusted_certificate	/etc/letsencrypt/live/grafana.example.com/chain.pem;

		ssl_session_timeout		5m;
		ssl_session_cache	shared:MozSSL:10m;
		ssl_session_tickets	off;

		ssl_protocols	TLSv1.2	TLSv1.3;
		ssl_prefer_server_ciphers	on;
		ssl_ciphers	ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384;
		ssl_ecdh_curve	X25519:prime256v1:secp384r1:secp521r1;
		ssl_stapling	on;
		ssl_stapling_verify	on;
		ssl_dhparam	/etc/ssl/certs/dhparam.pem;

		resolver	1.1.1.1	1.0.0.1	[2606:4700:4700::1111]	[2606:4700:4700::1001]	valid=60s;
		resolver_timeout	2s;

		location	/	{
		proxy_set_header	Host	$http_host;
		proxy_pass	http://localhost:3000;

		}

		location	/api/live	{
		proxy_http_version	1.1;
		proxy_set_header	Upgrade	$http_upgrade;
		proxy_set_header	Connection	$connection_upgrade;
		proxy_set_header	Host	$http_host;
		proxy_pass	http://localhost:3000;
}

		location	/influxdb/	{
access_log	/var/log/nginx/influx.access.log;

		error_log	/var/log/nginx/influx.error.log;
		rewrite	^/influxdb$	/influxdb/	permanent;
		rewrite	^/influxdb/(.*)$	/$1	break;
		proxy_cookie_path	~*^/api	/influxdb/api;
		proxy_connect_timeout	600s;
		proxy_http_version 1.1;
		proxy_pass	http://localhost:8086;
		proxy_read_timeout	600s;
		proxy_send_timeout	600s;
		proxy_set_header Authorization	$http_authorization;
		proxy_set_header	Connection	"upgrade";
		proxy_set_header	Host	$http_host;
		proxy_set_header	Upgrade	$http_upgrade;
		proxy_set_header	X-Forwarded-For	$proxy_add_x_forwarded_for;
		proxy_set_header	X-Forwarded-Proto	https;
		proxy_set_header	X-Real-IP	$remote_addr;
		sub_filter	'<base	href="/">'	'<base	href="/influxdb/">';
		sub_filter	'src="/'	'src="/influxdb/';
		sub_filter	'href="/'	'href="/influxdb/';
		sub_filter	'data-basepath="'	'data-basepath="/influxdb/';
		sub_filter	'n.p="/"'	'n.p="/influxdb/"';
		sub_filter	'o.p="/"'	'o.p="/influxdb/"';
		sub_filter	'/api/'	'/influxdb/api/';
		sub_filter	'api/v2/query'	'influxdb/api/v2/query';
		sub_filter	'/health`'	'/influxdb/health`';
		sub_filter_types	text/css	text/javascript	application/javascript	application/json;
		sub_filter_once off;
}

}
#	enforce	HTTPS
server {
		listen	80;
		listen	[::]:80;
		server_name	grafana.example.com;
		return	301	https://$host$request_uri;

}

Save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted.

Verify	your	Nginx	configuration.

$	sudo	nginx	-t

Restart	the	Nginx	server.

$	sudo	systemctl	restart	nginx

Configure	Telegraf	for	HTTPS

Open	the	file	/etc/telegraf/telegraf.conf	for	editing.

$	sudo	nano	/etc/telegraf/telegraf.conf

Search	for	the	section	[[outputs.influxdb_v2]]	and	change	the	value	of	the	URL	to	https://grafana.nspeaks.com/influxdb	so	that	the	data	between	InfluxDB	and	Telegraf	is	secured.

urls	=	["https://grafana.example.com/influxdb"]

Save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted.

Restart	the	Telegraf	service.

$	sudo	systemctl	restart	telegraf

Configure	Grafana	for	HTTPS

Next,	we	need	to	configure	Grafana	for	HTTPS	access.	Open	the	/etc/grafana/grafana.ini	file	for	editing.

$	sudo	nano	/etc/grafana/grafana.ini

Find	the	[server]	section	and	change	the	domain	variable,	and	root_url	as	follows.

#	The	public	facing	domain	name	used	to	access	grafana	from	a	browser
;domain	=	localhost
domain	=	grafana.example.com

#	Redirect	to	correct	domain	if	host	header	does	not	match	domain
#	Prevents	DNS	rebinding	attacks
;enforce_domain	=	true

#	The	full	public	facing	url	you	use	in	browser,	used	for	redirects	and	emails
#	If	you	use	reverse	proxy	and	sub	path	specify	full	url	(with	sub	path)
;root_url	=	%(protocol)s://%(domain)s:%(http_port)s/
root_url	=	%(protocol)s://%(domain)s

Save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted.

Restart	the	Grafana	Server.

$	sudo	systemctl	restart	grafana-server

Close	Firewall	Ports	for	InfluxDB	and	Grafana

You	should	also	close	the	InfluxDB	and	Grafana	ports.

$	sudo	ufw	delete	allow	8086
$	sudo	ufw	delete	allow	3000

Grafana	should	be	accessible	at	https://grafana.example.com	and	InfluxDB	UI	and	API	should	both	be	accessible	at	the	URL	https://grafana.example.com/influxdb.

Conclusion
This	concludes	the	tutorial	about	installing	and	configuring	the	TIG	Stack	on	a	Debian	12	server.	If	you	have	any	questions,	post	them	in	the	comments	below.

